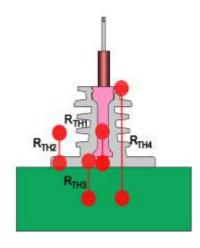


For compact construction

Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminium profile.


Solder, Cable and "Fast-On" Termination

More resistors in one profile possible

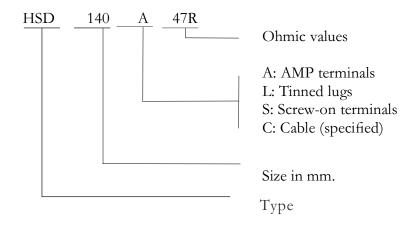
Insulation

Silicone Rubber + MICA. The Silicone is UL-recognized (UL 94 HB) to a working temperature of 220° C. Temperatures of up to 300° C can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the dielectric strength.

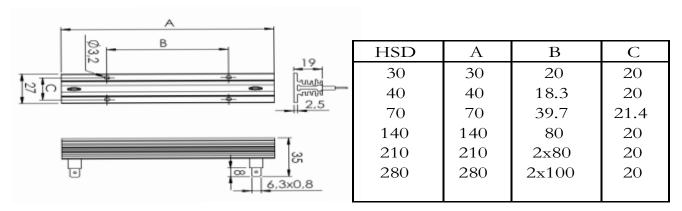
Thermal Resistances

R TH1: Wire to Alu-house

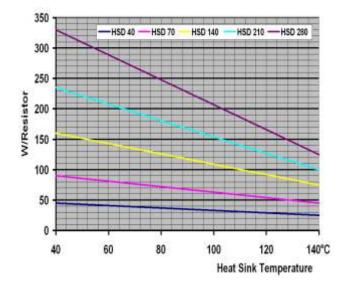
R TH2: Alu-house to air per resistor


R TH3: Alu-house to heat sink per resistor

R TH4: Resistor surface to heat sink per resistor


Showing the Thermal Resistance (° C/W) between different measuring points.

	HSD 40	HSD 70	HSD 140	HSD 210	HSD 280
R TH1	4	2	1	0.75	0.5
R TH2	13	8	4.6	3.3	2.9
R TH3	0.2	0.1	0.05	0.03	0.02
R TH4	0.4	0.28	0.14	0.09	0.075


Please Order as follows

Mechanical specifications

Power Dissipation

This graph shows the maximum wattage rating for each of the five possible ressistors of standard size corresponding to the heat sin temperature. It is assumed that all resistors are equally loaded.

Designing

The following equations are applied by the dimensioning of the resistors at stationary load. If more information is required please consult Danotherm.

It's assumed that the air around the resistors is stationary. (Worst case).

Symbols employed:

W MAX: Maximum reguired load in resistor

T MAX: Maximum hot spot temperature reguested in resistor

 $(T_{MAX} < 220^{\circ})$ C) The lower T MAX the higher reliability and lifetime.

T AMB: Ambient temperature

R TH: Thermal resistance. Refer to table Thermal resistances

Тн: Heat sink temperature (chassis).

T: Temperature on top of the Aluminium profile.

Following conditions are possible:

- 1. HSD is mounted on a heat sink:
 - A. The thermal resistance R TH of the heat sink is known, T = W MAX x (R TH4 + R TH)Check that: T MAX = W MAX x (R TH + R TH3 + R TH1) + T AMB < 220° C
 - B. The Temperature of the Heat Sink is known, T = W MAX x R TH4 + T HCheck that: $T \text{ MAX} = W \text{ MAX } x (R \text{ TH1} + R \text{ TH3}) + T \text{ H} < 220^{\circ}$
- 2. HSD is mounted without a heat sink:

Check that: T MAX = W MAX x (R TH1 + R TH2) + T AMB $< 220^{\circ}$ C

Specifications

Power rating		12 W - 300 W	
	HSD 40:	R1 - 3K3	
Resistance range (standard)*	HSD 70:	R22 - 6K8	
E12 values preferred for	HSD140:	R47 - 18K	
smaller quantities	HSD 210:	R82 - 27K	
	HSD 280:	1R - 39K	
Resistance tolerance	$\pm 5\% / \pm 10\%$		
Temperature Coefficients			
Normal	50 ppm – 150 ppm		
Low ohmic values	400 ppm		
Dielectric strength	2500 VAC peak		
Working voltage	1200 VAC		
Test voltage	6000 VDC		

^{*} Low-ohmic values on request # Type HSD