Wr2 Surge resistors for PCB Mounting

Dimensions

Features

I High Surge Energy Rating II 100% Cearmic Structure. III Desighed for PCB Withstand. IV High Voltage Withstand. V Essentially Non-Inductive VI Wide Resistivity Range
VII Coating Approved to U194 V-0.

Reference Standards

JISC 5201-1

For Wr Surge Resistors with Surge Energy Rating 2250 J - 10500 J:

$\begin{aligned} & \text { RESISTOR } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { DIM. } \\ & \text { CODE } \end{aligned}$	OVERALL DIMENSIONS			$\begin{aligned} & \text { VOL. } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \text { MAX. } \\ & \text { J } \\ & @ 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { MAX. } \\ \text { W } \\ @ 25^{\circ} \mathrm{C} \end{array}$	$\underset{(\mathrm{t})}{\mathrm{T} . \mathrm{T} . \mathrm{C}}$	WT.	A/L	RESISTANCE RANGE	
		Do Max	$\begin{aligned} & \hline \text { Lo } \\ & \text { Max } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Lp } \\ & \text { Pitch } \\ & \hline \end{aligned}$								
											MIN	MAX
UNITS		(mm)	(mm)	(mm)	(cm3)	(J)	(W)	(s)	(g)	(cm)	(Ohms)	(Ohms)
Wr2 2250	2420	26	24	20	9.0	2250	6.00	390	24.0	2.3	4R7	3K3
Wr2 2850	2425	26	29	25	11.5	2850	6.50	435	28.0	1. 8	5R6	4K7
Wr2 3500	2431	26	35	32	14.0	3500	7.50	465	35.0	1. 5	6R8	5K6
Wr2 4200	2437	26	41	36	17.0	4200	8.50	490	40.0	1. 2	10R0	6K9
Wr2 5200	2446	26	50	46	21.0	5200	10.00	520	50.0	1. 0	10R0	6K9
Wr2 7000	3137	33	41	38	28.0	7000	12.00	605	66.0	2. 0	5R6	3K3
Wr2 8690	2146	33	50	46	35.0	8690	13.50	655	82.0	1.6	6R8	5K6
Wr2 10500	3155	33	59	56	42.0	10500	15.50	680	100.0	1. 4	8R2	6K3

Ordering Information

Example:
Wr2
6.5
2250
K
4R7
(1)
(2)
(3)
(4)
(5)
Series Name Power Rating Joules Tolerance Resistace Value
1.Type:Wr2 SERIES
2.Power: $2250=6 \mathrm{~W}, 2825=6.5 \mathrm{~W}, 3500=7.5 \mathrm{~W}, 4200=8.5 \mathrm{~W}, 5200=10 \mathrm{~W}, 7000=12 \mathrm{~W}$
3.Joules: $2250=2250,2850=2850,3500=3500,4200=4200,5200=5200,7000=7000$
4.Tolerance: $\mathrm{K} \pm 10, \mathrm{M} \pm 20$
5.Resistace Value:MIN:4R7 MAX:6K9

Wr2 Surge resistors for PCB Mounting

Applications And Ratings

The Maximum Working Voltage levels can be derived from the appropriate formulae illustrated in the tables below. Examples are shown at the foot of this page.
Waveforms are defined in the usual manner: $1.2 / 50 \mu \mathrm{~s}$ indicates a rise time to peak value in $1.2 \mu \mathrm{~s}$ and an exponential decay to half amplitude in a total time of $50 \mu \mathrm{~s}$.

Wr2 2250

IMPULSE / WAVESHAPE	MAX. WORKING VOLTAGE (kV)
$(50 \mathrm{~Hz} \mathrm{rms})$	$1.9 \times(2.3 \mathrm{R} / \mathrm{t})^{0.3}$
$(1.2 / 50 \mu \mathrm{~s})$	$1.26 \mathrm{R} \times(-1+\sqrt{ }(1+26 / \mathrm{R})$
$(10 / 1000 \mu \mathrm{~s})$	$0.0627 \mathrm{R} \times(-1+\sqrt{ }(1+526 / \mathrm{R})$
$(500 / 5000 \mu \mathrm{~s})$	$0.0126 \mathrm{R} \times(-1+\sqrt{ }(1+2630 / \mathrm{R})$

Wr2 2825

IMPULSE / WAVESHAPE	MAX. WORKING VOLTAGE (kV)
$(50 \mathrm{~Hz} \mathrm{rms})$	$2.4 \times(1.8 \mathrm{R} / \mathrm{t})^{0.3}$
$(1.2 / 50 \mu \mathrm{~s})$	$1.26 \mathrm{R} \times(-1+\sqrt{ }(1+33 / \mathrm{R})$
$(10 / 1000 \mu \mathrm{~s})$	$0.0627 \mathrm{R} \times(-1+\sqrt{ }(1+658 / \mathrm{R})$
$(500 / 5000 \mu \mathrm{~s})$	$0.0126 \mathrm{R} \times(-1+\sqrt{ }(1+3288 / \mathrm{R})$

Wr2 3500

IMPULSE / WAVESHAPE	MAX. WORKING VOLTAGE (kV)
$(50 \mathrm{~Hz} \mathrm{rms})$	$2.9 \mathrm{x}(1.5 \mathrm{R} / \mathrm{t})^{0.3}$
$(1.2 / 50 \mu \mathrm{~s})$	$1.18 \mathrm{R} \times(-1+\sqrt{ }(1+41 / \mathrm{R})$
$(10 / 1000 \mu \mathrm{~s})$	$0.0589 \mathrm{R} \times(-1+\sqrt{ }(1+815 / \mathrm{R})$
$(500 / 5000 \mu \mathrm{~s})$	$0.0118 \mathrm{R} \times(-1+\sqrt{ }(1+4077 / \mathrm{R})$

Wr2 4200

IMPULSE / WAVESHAPE	MAX. WORKING VOLTAGE (kV)
$(50 \mathrm{~Hz} \mathrm{rms})$	$3.5 \times(1.2 \mathrm{R} / \mathrm{t}) 0.3$
$(1.2 / 50 \mu \mathrm{~s})$	$1.11 \mathrm{R} \times(-1+\sqrt{ }(1+49 / \mathrm{R})$
$(10 / 1000 \mu \mathrm{~s})$	$0.0552 \mathrm{R} \times(-1+\sqrt{ }(1+973 / \mathrm{R})$
$(500 / 5000 \mu \mathrm{~s})$	$0.0110 \mathrm{R} \times(-1+\sqrt{ }(1+4866 / \mathrm{R})$

Wt2 5200

IMPULSE / WAVESHAPE	MAX. WORKING VOLTAGE (kV)
$(50 \mathrm{~Hz} \mathrm{rss)}$	$4.4 \times(1.0 \mathrm{R} / \mathrm{t})^{0.3}$
$(1.2 / 50 \mu \mathrm{~s})$	$1.00 \mathrm{R} \times(-1+\sqrt{ }(1+61 / \mathrm{R})$
$(10 / 1000 \mu \mathrm{~s})$	$0.0495 \mathrm{R} \times(-1+\sqrt{ }(1+1210 / \mathrm{R})$
$(500 / 5000 \mu \mathrm{~s})$	$0.0100 \mathrm{R} \times(-1+\sqrt{ }(1+6050 / \mathrm{R})$

Wr2 7000

IMPULSE / WAVESHAPE	MAX. WORKING VOLTAGE (kV)
$(50 \mathrm{~Hz} \mathrm{rms})$	$3.5 \times(2.0 \mathrm{R} / \mathrm{t})^{0.3}$
$(1.2 / 50 \mu \mathrm{~s})$	$1.84 \mathrm{R} \times(-1+\sqrt{ }(1+29 / \mathrm{R})$
$(10 / 1000 \mu \mathrm{~s})$	$0.0920 \mathrm{R} \times(-1+\sqrt{ }(1+583 / \mathrm{R})$
$(500 / 5000 \mu \mathrm{~s})$	$0.0184 \mathrm{R} \times(-1+\sqrt{ }(1+2917 / \mathrm{R})$

Wr2 8690

IMPULSE / WAVESHAPE	MAX. WORKING VOLTAGE (kV)
$(50 \mathrm{~Hz} \mathrm{rms})$	$4.4 \times(1.6 \mathrm{R} / \mathrm{t})^{0.3}$
$(1.2 / 50 \mu \mathrm{~s})$	$1.65 \mathrm{R} \times(-1+\sqrt{ }(1+36 / \mathrm{R})$
$(10 / 1000 \mu \mathrm{~s})$	$0.0826 \mathrm{R} \times(-1+\sqrt{ }(1+725 / \mathrm{R})$
$(500 / 5000 \mu \mathrm{~s})$	$0.0165 \mathrm{R} \times(-1+\sqrt{ }(1+3626 / \mathrm{R})$

Wr2 Surge resistors for PCB Mounting

Wr2 10500

IMPULSE / WAVESHAPE	MAX. WORKING VOLTAGE (kV)
$(50 \mathrm{~Hz} \mathrm{rms})$	$5.2 \times(1.4 \mathrm{R} / \mathrm{t}) 0.3$
$(1.2 / 50 \mu \mathrm{~s})$	$1.46 \mathrm{R} \times(-1+\sqrt{ }(1+43 / \mathrm{R})$
$(10 / 1000 \mu \mathrm{~s})$	$0.0732 \mathrm{R} \times(-1+\sqrt{ }(1+867 / \mathrm{R})$
$(500 / 5000 \mu \mathrm{~s})$	$0.0146 \mathrm{R} \times(-1+\sqrt{ }(1+4336 / \mathrm{R})$

Worked example (50 Hz rms):

Consider an Wr2 2825 Resistor with a Resistance Value of 100R0.
What is the maximum 50 Hz rms Working Voltage (kV) sustainable for an insertion time of 100 ms ?
V working $=2.4 \times(1.8 \mathrm{R} / \mathrm{t}) 0.3=2.86 \mathrm{kV}$
(Note: $\mathrm{R}=$ Resistance Value in Ohms and $\mathrm{t}=50 \mathrm{~Hz}$ Insertion time in ms)
Worked example ($1.2 / 50 \mu \mathrm{~s}$) :
Consider an Wr2 2825 Resistor with a Resistance Value of 100R0.
What is the maximum Working Voltage (kV) for a 1.2 / $50 \mu \mathrm{~s}$ waveform?
V working $=1.26 \mathrm{R} \times(-1+\sqrt{ }(1+33 / \mathrm{R}))=19.31 \mathrm{kV}$

THERMAL PARAMETERS

Heat generated by Wr 2 Series Resistors is dissipated mainly by radiation and convection from the exposed surface areas. Within restricted domains, mathematical models may be employed to permit heat transfer estimations.

Symbols	$\begin{aligned} & \hline \mathrm{TT}=\text { Temperature Rise (}{ }^{\circ} \mathrm{C} \text {) } \\ & \mathrm{W}=\text { = Watts / Unit Exposed Surface Area (W.cm }{ }^{-2} \text {) } \\ & \mathrm{v}=\text { Volume / Disc (cm 3) } \\ & \mathrm{cm}=\text { Specific Heat Capacity of Active Material = 2 } \cdot \mathrm{cm}^{-3} . \mathrm{cm}^{-1} \mathrm{C}^{-1} \\ & \text { Do = Disc Outside Diameter (cm) } \\ & \mathrm{t}=\text { Resistor Thermal Time Constant }(\mathrm{s}) \end{aligned}$
Radiation and Convection	$\begin{aligned} & \text { Wa }=0.00026(\Delta \mathrm{~T}) 1.4 \\ & \left(\Delta \mathrm{~T}=50^{\circ} \quad \mathrm{C} \text { to } 175^{\circ} \quad \mathrm{C}, \mathrm{Do}=10 \mathrm{~mm} \text { to } 151 \mathrm{~mm}, \text { Ambient } 25^{\circ} \mathrm{C}\right) \end{aligned}$
Thermal Conductivity	$0.04 \mathrm{~W} / \mathrm{cm} 2 .{ }^{\circ} \mathrm{C} / \mathrm{cm}$
Maximum Insertion Energy Ratings	For a Resistor initially at $25^{\circ} \mathrm{C}: 350$ Joules / cm3 (Infrequently) For a Resistor initially at $25^{\circ} \mathrm{C}: 250$ Joules / cm3 (Continuously)
Recommended Operating Temperatures	$200^{\circ} \mathrm{C}$ (Infrequent Operation) $150^{\circ} \mathrm{C}$ (Continuous Operation)
Temperature Rise from Energy Injection	$\Delta \mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=$ Joules (per Resistor) / (rxcm) (Free Air)
Thermal Time Constant	$\mathrm{t}(\mathrm{s})=$ Max Joules @ $25^{\circ} \mathrm{C} / \mathrm{Max}$ Watts @ $25^{\circ} \mathrm{C}$
Full Cooling	$\geqslant 4 \mathrm{t}$
De-rating for other ambien Temperatures ($\mathrm{Ta}{ }^{\circ} \mathrm{C}$)	Multiply Max Joules @ $25^{\circ} \mathrm{C}$ \& Max Watts @ $25^{\circ} \mathrm{C}$ by the ratio (150-Ta) / 125
Repetitive Thermal Impulsing	Assuming that the Heat Transfer Coefficient $\alpha\left(\mathrm{W} / \mathrm{cm} 2 .^{\circ} \mathrm{C} / \mathrm{cm}\right)$ is constant over the operating temperature range, then the Peak temperature Rise ($\Delta \mathrm{Tp}$) associated with repetitive impulsing can be estimated by way of reference to a classical geometric progression: If Where $\begin{aligned} & \Delta \mathrm{Tp}\left(^{\circ} \mathrm{C}\right)=\Delta \mathrm{T} x(1-(\mathrm{e}-(\mathrm{t} / \mathrm{t})) \mathrm{n}) /(1-\mathrm{e}-(\mathrm{t} / \mathrm{t})) \ldots \ldots \ldots \ldots . .1 \\ & \Delta \mathrm{~T} \text { is the Temperature Rise associated with each electrical impulse }\left(^{\circ} \mathrm{C}\right) \\ & \mathrm{t} \\ & \mathrm{t} \quad \text { is the Resistor Thermal Time Constant (s) } \\ & \mathrm{t} \quad \text { is the Repetition Rate (s) } \\ & \mathrm{n} \\ & \text { is the number of impulses } \end{aligned}$ If the number of impulses (n) $\rightarrow \infty$ (i.e.continuous duty), then equation 1 can be simplified thus: $\Delta \operatorname{Tp}\left({ }^{\circ} \mathrm{C}\right)=\Delta \mathrm{T} /(1-\mathrm{e}-(\mathrm{t} / \mathrm{t})) \ldots \ldots \ldots \ldots \ldots . .$

Wr2 Surge resistors for PCB Mounting

ELECTRICAL PARAMETERS

Resistance Values	E6 and E12 values are available as standard.
Resistance Tolerance	$\pm 20 \%$ and $\pm 10 \%$ available as standard.
Resistivity Range - ϱ	10 Ohm cm to 5000 Ohm cm
$\varrho=\mathrm{R} \times \mathrm{A} / \mathrm{L}$, where $\mathrm{R}=$ Resistance Value	

MECHANICAL PARAMETERS

Explanation of Dimension Code	Each Resistor Type is assigned a 4 digit code, the first 2 digits give the nominal Active Diameter (D) in mm and the last 2 digits give the nominal Active Length (L) of the Resistor in mm . From this information the Volume of Active Material (v) may be determined.
Construction	The Gold Plated Brass terminations are attached to the Copper metallised contact on the Resistor body opposing flat surfaces, with high melting point solder. This permits reliable short time operation at temperatures up to 200
Coating	The UL94 V-0 approved epoxy resin coating is applied by fluidised bed technique The coating finish is hard, smooth and has good appearance to harmonise with other electronic components. If this range of Resistors experience surface temperatures regularly in excess of $150^{\circ} \mathrm{C}$, the coating will tend to degrade slightly, becoming darker. Though unsightly, performance is not compromised. Whilst the coating can reduce the rate of moisture ingress, it is not impervious to liquids.
Terminations / Soldering	The Gold Plated Brass termination pins are 1.5 mm wide by 0.4 mm thick with the spring pin format designed to ensure stability during PCB assembly. recommend , as a minimum, PCB mounting holes of 2.0 mm Diameter. Soldering is permissible with mildly activated fluxed solders with liquidous properties less than $230^{\circ} \mathrm{C}$.
Coefficient of Linear Expansion	In the range $+4 \times 10^{-6}$ to $+10 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$ depending on material Res

